Interpolating sparse scattered data using flow information
نویسندگان
چکیده
منابع مشابه
Interpolating sparse scattered data using flow information
Scattered data interpolation and approximation techniques allow for the reconstruction of a scalar field based upon a finite number of scattered samples of the field. In general, the fidelity of the reconstruction with respect to the original scalar field tends to deteriorate as the number of samples decreases. For the situation of very sparse sampling, the results may not be acceptable at all....
متن کاملA Framework for Interpolating Scattered Data Using Space-Filling Curves
The analysis of spatial data occurs in many disciplines and covers a wide variety activities. Available techniques for such analysis include spatial interpolation which is useful for tasks such as visualization and imputation. This paper proposes a novel approach to interpolation using space-filling curves. Two simple interpolation methods are described and their ability to interpolate is compa...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملQuadrature Formulas on Spheres Using Scattered Data
For the unit sphere embedded in a Euclidean space, we obtain quadrature formulas that are exact for spherical harmonics of a fixed order, have nonnegative weights, and are based on function values at scattered points (sites). The number of scattered sites required is comparable to the dimension of the space for which the quadrature formula is required to be exact. As a part of the proof, we der...
متن کاملScattered Data Modelling Using Radial Basis Functions
Radial basis functions are traditional and powerful tools for multivariate interpolation from scattered data. This self-contained talk surveys both theoretical and practical aspects of scattered data fitting by radial basis functions. To this end, basic features of the radial basis function interpolation scheme are first reviewed, such as well-posedness, numerical stability and approximation or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Science
سال: 2016
ISSN: 1877-7503
DOI: 10.1016/j.jocs.2016.04.001